extension | φ:Q→Aut N | d | ρ | Label | ID |
(C22xC12).1C4 = C24.3Dic3 | φ: C4/C1 → C4 ⊆ Aut C22xC12 | 48 | | (C2^2xC12).1C4 | 192,84 |
(C22xC12).2C4 = (C2xC12):C8 | φ: C4/C1 → C4 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).2C4 | 192,87 |
(C22xC12).3C4 = C12.(C4:C4) | φ: C4/C1 → C4 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).3C4 | 192,89 |
(C22xC12).4C4 = C3xC23:C8 | φ: C4/C1 → C4 ⊆ Aut C22xC12 | 48 | | (C2^2xC12).4C4 | 192,129 |
(C22xC12).5C4 = C3xC22.M4(2) | φ: C4/C1 → C4 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).5C4 | 192,130 |
(C22xC12).6C4 = C3xC22.C42 | φ: C4/C1 → C4 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).6C4 | 192,149 |
(C22xC12).7C4 = C24.D4 | φ: C4/C1 → C4 ⊆ Aut C22xC12 | 48 | 4 | (C2^2xC12).7C4 | 192,112 |
(C22xC12).8C4 = (C6xD4).16C4 | φ: C4/C1 → C4 ⊆ Aut C22xC12 | 48 | 4 | (C2^2xC12).8C4 | 192,796 |
(C22xC12).9C4 = C3xC23.C8 | φ: C4/C1 → C4 ⊆ Aut C22xC12 | 48 | 4 | (C2^2xC12).9C4 | 192,155 |
(C22xC12).10C4 = C2xC12.10D4 | φ: C4/C1 → C4 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).10C4 | 192,785 |
(C22xC12).11C4 = C6xC4.10D4 | φ: C4/C1 → C4 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).11C4 | 192,845 |
(C22xC12).12C4 = C3xM4(2).8C22 | φ: C4/C1 → C4 ⊆ Aut C22xC12 | 48 | 4 | (C2^2xC12).12C4 | 192,846 |
(C22xC12).13C4 = (C2xC12):3C8 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 192 | | (C2^2xC12).13C4 | 192,83 |
(C22xC12).14C4 = C3xC22.7C42 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 192 | | (C2^2xC12).14C4 | 192,142 |
(C22xC12).15C4 = C3xC22:C16 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).15C4 | 192,154 |
(C22xC12).16C4 = C2xC42.S3 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 192 | | (C2^2xC12).16C4 | 192,480 |
(C22xC12).17C4 = C6xC8:C4 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 192 | | (C2^2xC12).17C4 | 192,836 |
(C22xC12).18C4 = C12xM4(2) | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).18C4 | 192,837 |
(C22xC12).19C4 = C6xC22:C8 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).19C4 | 192,839 |
(C22xC12).20C4 = C3xC24.4C4 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 48 | | (C2^2xC12).20C4 | 192,840 |
(C22xC12).21C4 = C6xC4:C8 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 192 | | (C2^2xC12).21C4 | 192,855 |
(C22xC12).22C4 = C2xC12:C8 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 192 | | (C2^2xC12).22C4 | 192,482 |
(C22xC12).23C4 = C12:7M4(2) | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).23C4 | 192,483 |
(C22xC12).24C4 = C42.270D6 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).24C4 | 192,485 |
(C22xC12).25C4 = C24.6Dic3 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 48 | | (C2^2xC12).25C4 | 192,766 |
(C22xC12).26C4 = C42.285D6 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).26C4 | 192,484 |
(C22xC12).27C4 = C2xC12.C8 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).27C4 | 192,656 |
(C22xC12).28C4 = C22xC4.Dic3 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).28C4 | 192,1340 |
(C22xC12).29C4 = C24.98D4 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).29C4 | 192,108 |
(C22xC12).30C4 = C2xC4xC3:C8 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 192 | | (C2^2xC12).30C4 | 192,479 |
(C22xC12).31C4 = C4xC4.Dic3 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).31C4 | 192,481 |
(C22xC12).32C4 = C22xC3:C16 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 192 | | (C2^2xC12).32C4 | 192,655 |
(C22xC12).33C4 = C2xC12.55D4 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).33C4 | 192,765 |
(C22xC12).34C4 = C23xC3:C8 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 192 | | (C2^2xC12).34C4 | 192,1339 |
(C22xC12).35C4 = C3xC4:M4(2) | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).35C4 | 192,856 |
(C22xC12).36C4 = C3xC42.12C4 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).36C4 | 192,864 |
(C22xC12).37C4 = C3xC42.6C4 | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).37C4 | 192,865 |
(C22xC12).38C4 = C6xM5(2) | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).38C4 | 192,936 |
(C22xC12).39C4 = C2xC6xM4(2) | φ: C4/C2 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).39C4 | 192,1455 |